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A QSAR using Comparative Molecular Field Analysis (CoMFA) is developed for a set of 23 catalysts
containing bisoxazoline or phosphinooxazoline ligands that are known to induce asymmetry during
the Diels-Alder reaction of N-2-alkenoyl-1,3-oxazolidine-2-one with cyclopentadiene. It is shown
that extremely high q2 statistics can be derived by using standard modeling protocols when internal
validation alone is done as well as when an external test set is used. From these models it is shown
that approximately 70% of the variance in the observed enantiomeric excess can be attributed to
the steric field and the remainder of the variance to the electrostatic field. Suggestions about how
to improve the performance of inefficient catalysts are given.

Introduction

The topic of chirality transcends traditional boundaries
separating chemistry from biology and science from
technology. The word “chiroscience” is sometimes used
to connote the interconnectedness of science and technol-
ogy as an overarching theme in studies related to
understanding and using chirality.1 This interconnect-
edness is especially true in the subdisciplines of the
chemical sciences dedicated to the production of optically
pure materials, impelled primarily by the pharmaceuti-
cals industry that has a mandate to test enantiomeric
drugs as separate entities, but also from other sectors of
business.

One can obtain optically pure materials from nature
or one can separate enantiomers from a mixture (racemic
or otherwise). Alternatively, and preferably, one can
synthesize the desired material. This can be accom-
plished indirectly with the use of chiral auxiliaries (that
first need to be appended and then removed), or directly

with chiral reagents. The latter approach coupled with
catalysts is the ideal method for converting a prochiral
reactant into an optically pure product, but this can be
accomplished only if one of the two competing reaction
channels accessible to the system is shut off. There has
been a great deal of work recently focusing on this aspect
of synthetic chemistry.

The emphasis of chemical research in the area of
developing catalysts capable of asymmetric induction is
understandable, especially from an industrial perspective
where one wants high yields of highly stereoselective
reactions using inexpensive reagents and where the
catalysts maintain their integrity for indefinite time
periods. Many advances have been made in this regard
and those developments have been highlighted in numer-
ous reviews culminating in the state-of-the-art compen-
dium Comprehensive Asymmetric Catalysis published in
1999.2 These summarizing publications indicate that we
are far from achieving the industrial goals desired for
chiral catalysts; while some catalysts perform well, most
do not, even after extensive “tweaking”. Moreover, what
is learned from optimization of catalytic performance in
one system usually does not transfer well to other
systems; there is a clear lack of guidelines or rules for
chiral catalyst design.

Understanding how chiral catalysts work and then
transferring that knowledge to new and improved cata-
lysts can be a difficult task. Traditionally chemists used
hand-held mechanical models to better comprehend how
asymmetry is induced but more recently molecular
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modeling tools have been used, especially quantum-based
methods. The reason for doing this is that one can
quantify differences between diastereomeric reaction
pathways by computing transition structures.3 Using
quantum theories this way is common, rigorous, and
useful, but there are several problems that can diminish
its utility as a predictive method. First, unless one uses
approximate methods such as semiempirical quantum
theories or potential energy functions that emulate
transition states, one is relegated to dealing with small
to medium molecules. Second, there is no guarantee that
the transition structures located computationally cor-
respond to those of the actual reaction channels being
followed experimentally. Moreover, in many instances
there exist a range of catalyst and substrate conformers
that must be evaluated. Third, one must account for
changes in spin state along the reaction path if such
changes in spin take place. This has been especially
problematic in the study of the Katsuki-Jacobson
catalyst.4-6 Finally, if these obstacles are cleared, it can
be difficult to extract information from those transition
states about the intermolecular interactions giving rise
to the preference of one pathway in lieu of the other that
would be of use to the bench chemist needing to design
improved catalysts.

There exists another modeling technique used by
scientists to make structure-activity relationships that,
historically, predates modern applied quantum chemistry
and which has been shown to be applicable to a wide
range of problems. This method is QSAR (quantitative
structure-activity relationships).7 While QSAR has its
own set of deficiencies and pitfalls, it might be a useful
tool for understanding how catalysts work and to predict
how to make improved catalysts. In this paper we ask
the following two questions: (1) Can off-the-shelf QSAR
methods be used for generating mathematical models of
catalytic systems of interest to synthetic chemists that
are both statistically significant and predictive? The
reason for asking this is because chemists are now using
combinatorial methods to provide an initial set of cata-
lysts for screening, and based on those screening results
QSAR might be able to provide guidance about what next
to make (or not make). (2) How do chiral catalysts work
to induce asymmetry? Clearly steric factors exist that
direct incoming reagents one way or another but, for a
given set of catalysts, how much of this directive influence
comes from repulsive/attractive steric influences and how
much originates from electrostatic effects? Furthermore,
can one predict how to modulate those steric and elec-
tronic influences to make improved chiral catalysts?
These questions are the impetus for the research de-
scribed below.

Background

In traditional QSAR one attempts to correlate the
activities of a set of molecules (that are presumed to carry
out their tasks in a similar manner) with one or more
attributes of those molecules. These attributes are em-
bedded in molecular descriptors that typically describe
hydrophobic, steric, and electronic features of each
molecule but a descriptor can be anything that describes
some feature of a molecule including graph theory indices
describing atomic connectivity. These descriptors are
regressed onto the activity data to generate a mathemati-
cal model that then can be used to predict the activity of
as yet unsythesized analogues.

A complement to this approach is Comparative Molec-
ular Field Analysis (CoMFA).8 The genius of this method
is that one addresses the interactions each molecule in
the data set “feels” external to itself. This is done by
placing each molecule, oriented the same way, at the
center of a three-dimensional grid and evaluating at each
grid point the interaction energy between a probe mol-
ecule (or atom) with each aligned molecule. The interac-
tion energy at each grid point is then a descriptor that
is used in the regression and, because there can be so
many descriptors, robust statistical methods such as
partial least squares (PLS) projections to latent variables
(a method akin to principle component regression analy-
sis) are used.9

In a typical QSAR or CoMFA analysis one must not
only derive the mathematical model, one must then
validate it. That is to say, providing a statistical measure
of agreement between experiment and theory, like a
correlation coefficient from a plot of computed activity
(using the derived model) versus experimental activities
for the molecules in the data set, is not sufficient
validation. Accordingly, a variety of validation schemes
have been developed, the most common of which is the
leave-one-out (LOO) cross-validation method. Here one
omits a single compound from the data set and a PLS
model is developed by using the remaining compounds.
That model is used to predict the activity of the omitted
molecule that was not included in the model. This
procedure is repeated until all molecules in the data set
have been eliminated once. The most salient statistic
from such an analysis is the cross-validated r squared
(rcv

2) value, commonly published as q2. A cross-validated
mathematical model is important because the model is
proved to be predictive. The cross-validated r squared
statistic, q2, is always smaller than a simple r2 from plots
of predicted activity versus experimental activity. It is
commonly stated that a statistically meaningful model
has been achieved when q2 > 0.3-0.5. A perusal of q2

values published in the Journal of Medicinal Chemistry
between the years 1996 and 2000 ranges from 0.56 to
0.83, with the average for 40 CoMFA analyses being q2

) 0.66. We will show below that our values are substan-
tially higher than this average.
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Systems Studied

In a traditional QSAR study one might evaluate, say,
the binding affinities of a series of drugs to a common
receptor. The assumption being made is that all drugs
bind to the same receptor and evoke biological responses
via the same mechanism. In those studies the nature of
the receptor is unknown. In our study we do the reverse;
we know the shape of the catalysts (the receptor in our
case) and we want to correlate the steric and the
electrostatic fields for those chiral catalysts with the
experimental enantiomeric excesses (ee) for a common
reaction. The reaction we evaluate is depicted in Scheme
1. This reaction has become a de facto benchmark for
synthetic chemists who want to demonstrate the utility
of their chiral catalysts.

The assumption made here is that the same mecha-
nism (a concerted pericyclic reaction of more or less
similar synchonicity) prevails around the catalyst’s metal
center. To ensure that similar transition states exist for
the reactions being studied here we select catalysts with

the same metal (copper) and similar (though not redun-
dant) ligands which have been published in the litera-
ture. Systems fulfilling the following requirements were
selected for this study: (1) The publication from which
we extracted our information should have a complete
assessment of reaction conditions such that the reported
ee is deemed reliable; the efficacy of many catalyzed
reactions is often found to be dependent upon more than
just the ligand used. In particular the metal (including
its spin and oxidation state), the solvent, the temperature
and the nature of the counterions associated with the
catalyst before substrate binding all impact the observed
stereochemisty. The systems we selected are all well
studied in this regard by the authors who created each
catalyst. The ee values used in our analyses are thus
considered to be the maximum values corresponding to
the optimum reaction conditions for a given ligand. (2)
The reaction taking place should be as simple as possible.
In the example described below we select the Diels-Alder
reaction of Scheme 1 because the transition state for this
concerted pericyclic reaction is not expected to change
much from catalyst to catalyst.

The catalysts selected for our study are depicted in
Scheme 2. Citations for each catalyst are compiled in the
reference section of this paper.10-16 All compounds se-
lected contain at least one oxazole ring that was used
for alignment (see below). It is to be noted that two basic
chemotypes are contained in the table: one containing a
bisoxazoline substructure and another with a phosphi-

SCHEME 1

SCHEME 2
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nooxazoline substructure. Clearly the size, shape, and
electrical properties of these molecules covers a suitable
range of values for our analysis. The experimental values
are in parentheses adjacent to the corresponding catalyst
number. These data span a range of ee values from 10
to 99. Why and how these structurally related systems
give rise to such a diverse range of ee values is not
obvious and is the focus of this research.

Computational Methods

All computations were done with commercially available
software. In particular the quantum mechanical calculations
were done with the PM3tm Hamiltonian implemented in
Spartan 5.1.3.17 Crystal structures (when available) were
retrieved from the Cambridge Structural Database,18 and the
CoMFA was done with SYBYL 6.8.19

(a) Generation of Catalyst Structures. The geometry of
each catalyst was determined quantum chemically. Initial
atomic coordinates were generated with the builder facility of
Spartan or they were imported from the CSD. In all cases the
corresponding anions (usually triflates or antimony hexafluo-
rides) were included in the calculations. No continuum model
for solvent was applied in the calculation and the optimization
was stopped when Spartan’s default convergence criterion was
met. In some instances more than one conformation of catalyst
is possible. Following a systematic (grid) conformer search, the
lowest energy conformer was used for the CoMFA.

(b) Catalyst Alignment. The lowest energy structure of
each catalyst was imported into SYBYL (minus the associated
counterions). There exist several possible alignment schemes
and we opted for the most obvious: aligning the molecules by
least-squares fitting the five atoms in the oxazoline ring that
is common to all catalysts. Figure 1 depicts all 23 molecules
that have been superimposed this way.

(c) Selection of Variables. Once the molecules in the data
set are aligned they are centered in a three-dimensional grid
with uniformly placed grid points. At each grid point a test
probe is selected and the intermolecular energy between the
probe and each molecule is calculated. These interaction
energies are the descriptors used by SYBYL for the PLS
regression. Many options are available for selection of grid
dimensions, atomic charge assignments, treatment of the
dielectric between probe and molecule, the probe to be used,
etc. In this study we wanted to know if standard, commercially
available software is amenable to CoMFA analysis of chiral
catalysts. Thus we adopted a minimalist approach of (1)
beginning with suggested, default settings and atomic probes
in SYBYL and (2) not exploring all possible combinations of
SYBYL variables in an attempt to seek the optimum CoMFA.
Basically we present here a modest attempt to generate high-
quality CoMFA models without exhaustively searching all

possible combinations of variables, i.e., something a bench
chemist is willing to do. Tabulated in the Results and Discus-
sion section below are the lists of variables used and the
corresponding validation statistics.

(d) Internal vs External Validation. Most published
CoMFA studies include some type of cross-validation, usually
by invoking a leave-one-out strategy (LOO). The authors of
those papers feel confident that this internal validation is
satisfactory to prove the merits of the model, but Golbraikh
and Tropsha20 published a paper recently entitled “Beware of
q2”! In this paper the authors pointed out pitfalls of relying
on internal validations alone. They demonstrated convincingly
that mathematical models that are not evaluated by using an
external test set (i.e., a set of compounds not included in the
training set) might not be valid. They illustrated this problem
by presenting several published examples of QSARs where
internal validation alone gave high statistical significance but
when tested against an external test set did very poorly. They
argue correctly that the following three criteria must be met
to adequately validate the model. First, a high correlation
coefficient between predicted values and experimental values
for an external test set must be obtained. Second, the slope of
the plot of predicted versus actual values for that test set must
be close to unity. Third, the intercept of that plot should be
close to zero. These are stringent criteria for proving that a
mathematical model is valid, and they are conditions that we
have met (see below). Accordingly we carried out two CoMFA
analyses in this paper. One divides the 23 catalysts into a
training set and a test set and the other treats all 23 molecules
as a single, internally validated set. For the external validation
four catalysts were selected randomly (compounds 10, 15, 18,
and 22) and the remaining 18 served as the training set. Note
that in the external test set two compounds are bisoxazolines
and two happen to be phosphinooxazolines, thus representing
well the classes of catalysts.

Results and Discussion

(a) CoMFA with Internal Validation. By using the
aligned data set depicted in Figure 1 a standard CoMFA
was performed. Several kinds of partial atomic charges
were used initially for this evaluation including Mulliken
and potential derived charges, but the best results were

(10) Catalysts 1, 3, 4, 5, 6: Davies, I. W.; Gerena, L.; Cai, D.; Larsen,
R. D.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1997, 38, 1145.

(11) Catalyst 2: Ghosh, A. K.; Mathivanan, P.; Cappielo, J. Tetra-
hedron Lett. 1996, 37, 3815.

(12) Catalysts 7, 9, 10, 11, 12: Davies, I. W.; Gerena, L.; Cai, D.;
Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1997,
38, 1145.

(13) Catalyst 8: Davies, I. W.; Senanayake, C. H.; Larsen, R. D.;
Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1996, 1725.

(14) Catalyst 13: Evans, D. A.; Miller, S. J.; Lectka, T.; von Matt,
P. J. Am. Chem. Soc. 1999, 121, 7559.

(15) Catalysts 14, 15, 16, 17, 18, 19, 20: Sagasser, I.; Helmchen,
G. Tetrahedron Lett. 1998, 39, 261.

(16) Catalysts 21, 22, 23: Evans, D. A.; Lectka, T.; Miller, S. J.
Tetrahedron Lett. 1993, 34, 7027.

(17) Wavefunction, Inc.: 18401 Von Karman Ave., Suite 370, Irvine,
CA 92715.

(18) Cambridge Structural Database. Available from Wavefunction,
Inc.: 18401 Von Karman, Suite 370, Irvine, CA 92715.

(19) Tripos Associates Inc.: 1699 South Hanley Road, St. Louis, MO
63144 USA.

(20) Golbraikh, A.; Tropsha, A. J. Mol. Graphics Modell. 2002, 20,
269.

FIGURE 1. Alignment of all catalysts depicted in Scheme 1.
Hydrogen atoms have been omitted for clarity; only the lowest
energy conformer is considered in the set of catalysts.
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generally obtained with Gasteiger charges. The results
described herein are thus based on Gasteiger charges.
Table 1 summarizes some of our results. The headings
in each column refer to the following: the type of field
used for the analyses, how the dielectric of the medium
was treated, the spacing of the uniform grid in which the
aligned molecules are embedded, the type of probe used
at each grid point to calculate the interaction energies,

the number of latent variables extracted by the PLS
projection, the magnitude of the cross-validated r squared
coefficient, and finally, the simple correlation coefficient,
r squared, for that model.

The first entry in this table is the field used in the
analysis. The fields used in this study are the steric field
and the electrostatic field. It is to be noted that other
kinds of fields could be included, e.g., hydrogen bonding,

TABLE 1. Influence of Selected Variables on CoMFA Results for 23 Catalysts

fieldsa energy cutoffb dielectric function grid spacingc probe type latent variablesd rcv
2 r2 e

field
both 30/30 1/r2 2.00 C+

sp3 6//3 0.804//0.707 0.991
both 30/20 1/r2 2.00 C+

sp3 6//3 0.833//0.732 0.977
both 30/10 1/r2 2.00 C+

sp3 6//3 0.836//0.734 0.992
both 30/5 1/r2 2.00 C+

sp3 6//3 0.832//0.729 0.993
E 30 1/r2 2.00 C+

sp3 6//3 0.688//0.626 0.994
S 30 1/r2 2.00 C+

sp3 6//3 0.784//0.659 0.995
both 20/30 1/r2 2.00 C+

sp3 6//3 0.779//0.680 0.995
both 10/30 1/r2 2.00 C+

sp3 6//3 0.774//0.656 0.994
both 5/30 1/r2 2.00 C+

sp3 6//3 0.776//0.626 0.988

column filteringf

both 30/30 1/r2 2.00 C+
sp3 6//3 0.813//0.721 0.991

both 30/20 1/r2 2.00 C+
sp3 6//3 0.833//0.746 0.994

both 30/10 1/r2 2.00 C+
sp3 6//3 0.810//0.720 0.993

both 30/5 1/r2 2.00 C+
sp3 6//3 0.832//0.729 0.993

both 20/30 1/r2 2.00 C+
sp3 6//3 0.793//0.697 0.995

both 10/30 1/r2 2.00 C+
sp3 6//3 0.789//0.683 0.994

both 5/30 1/r2 2.00 C+
sp3 5//3 0.829//0.775 0.988

dielectric
both 30/30 1/r 2.00 C+

sp3 6//3 0.825//0.717 0.994
both 30/20 1/r 2.00 C+

sp3 6//3 0.826//0.715 0.994
both 30/10 1/r 2.00 C+

sp3 6//3 0.822//0.721 0.993
both 30/5 1/r 2.00 C+

sp3 6//3 0.808//0.717 0.993
both 20/30 1/r 2.00 C+

sp3 6//3 0.808//0.717 0.993
both 10/30 1/r 2.00 C+

sp3 6//3 0.786//0.682 0.992
both 5/30 1/r 2.00 C+

sp3 6//3 0.786//0.659 0.990
bothf 30/30 1/r 2.00 C+

sp3 6//3 0.838//0.720 0.994
bothf 30/20 1/r 2.00 C+

sp3 6//3 0.801//0.702 0.994
bothf 30/10 1/r 2.00 C+

sp3 6//3 0.755//0.661 0.993
bothf 30/5 1/r 2.00 C+

sp3 6//3 0.810//0.686 0.993
bothf 20/30 1/r 2.00 C+

sp3 6//3 0.820//0.717 0.993
bothf 10/30 1/r 2.00 C+

sp3 6//3 0.814//0.696 0.992
bothf 5/30 1/r 2.00 C+

sp3 5//3 0.840//0.772 0.990

grid spacing
both 30/20 1/r2 2.00 C+

sp3 6//3 0.833//0.732 0.977
both 30/20 1/r2 1.75 C+

sp3 6//3 0.717//0.598 0.990
both 30/20 1/r2 1.50 C+

sp3 6//3 0.729//0.632 0.992
both 30/20 1/r2 1.0 C+

sp3 6//3 0.696//0.585 0.994
both 30/20 1/r 2.00 C+

sp3 6//3 0.630//0.510 0.992
both 30/20 1/r 1.75 C+

sp3 6//3 0.697//0.563 0.994
both 30/20 1/r 1.50 C+

sp3 6//3 0.734//0.606 0.993
both 30/20 1/r 1.00 C+

sp3 6//3 0.692//0.565 0.994

probe type
both 30/20 1/r2 2.00 H+ 6//3 0.702//0.604 0.987
both 30/20 1/r2 1.75 H+ 6//3 0.717//0.598 0.990
both 30/20 1/r2 1.50 H+ 6//3 0.739//0.644 0.993
both 30/20 1/r2 1.00 H+ 6//3 0.726//0.629 0.993
both 30/20 1/r 2.00 H+ 6//3 0.671//0.557 0.987
both 30/20 1/r 1.75 H+ 6//3 0.686//0.567 0.991
both 30/20 1/r 1.50 H+ 6//3 0.714//0.620 0.994
both 30/20 1/r 1.00 H+ 6//3 0.700//0.599 0.993
both 30/20 1/r2 2.00 O-

sp3 6//3 0.684//0.610 0.989
both 30/20 1/r2 1.75 O-

sp3 6//3 0.697//0.602 0.992
both 30/20 1/r2 1.50 O-

sp3 6//3 0.756//0.653 0.993
both 30/20 1/r2 1.00 O-

sp3 6//3 0.739//0.638 0.995
both 30/20 1/r 2.00 O-

sp3 6//3 0.619//0.533 0.989
both 30/20 1/r 1.75 O-

sp3 6//3 0.684//0.563 0.992
both 30/20 1/r 1.50 O-

sp3 6//3 0.731//0.625 0.993
both 30/20 1/r 1.00 O-

sp3 6//3 0.704//0.595 0.990
a Fields are steric (S) and electrostatic (E) or both. b Steric cutoff listed first/Coulomb cutoffs listed second, values in kcal/mol. c Angstrom.

d optimum/minimum number of components. e These values are for three latent variables only. f Column filtering set to 2.
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hydrophobic, etc., but these two fields represent best the
interactions that take place between this set of chiral
catalysts and the reagents undergoing the Diels-Alder
reaction so they are used exclusively. When both fields
are included in the analysis there are twice as many
descriptors as when electrical fields or steric fields are
used alone. The next column in the table is the magni-
tude of the energy cutoff used. The energy cutoffs need
some explanationsat each grid point the interaction
energy between a probe atom and each of the atoms in
each of the aligned molecules is computed with a poten-
tial energy function. In some instances the grid points
lie close to one or more atoms and consequently the
computed energies at those points are unacceptably large.
Thence we invoke a cutoff that says, for example, remove
all descriptors that exceed a repulsive energy of 30 kcal/
mol for sterics, and likewise remove data points contain-
ing Coulombic attraction or repulsion of, say, 20 kcal/
mol. Various combinations of cutoffs are listed in the
table to illustrate the sensitivity of the model to such
omissions. The dielectric treatment we used initially is
1/r2 and the grid spacing was set to 2.0 Å. The initial
probe was a tetrahedral “carbon atom” with a +1 charge
for purposes of computing the Lennard-Jones steric field
and the Coulomb electric fields, respectively. In the
column labeled “latent variables” (LVs) we provide the
optimum number of variables determined from the PLS
analysis followed by (//) the minimum number of latent
variables. In traditional multiple regression methodology
one uses ∼5 observations per term in the QSAR equation.
The reason for this is that the molecular descriptors used
for QSARs are not orthogonal to each other. Hence, using
those nonorthogonal descriptors one would require about
4 terms in the QSAR model for the 23-molecule data set.
Contrarily, because the latent variables of a PLS are
orthogonal, one can use as many LVs as needed to
provide the best model. Nonetheless, to be conservative
we provide information about models using the minimum
number of LVs in addition to the optimum number. The
penultimate column in the table lists the rcv

2 from LOO
cross-validation and the last column is the squared
correlation coefficient, r2. The first number in this column
corresponds to the optimum number of latent variables
followed by (//) the value for only 3 latent variables.

The first entries in Table 1, listed under “field”, are
the result of models constructed where the cutoff values
of the fields have been changed. In this subsection of
Table 1 we find the best model to be that where the steric
cutoff is at 30 kcal/mol and the electric cutoff is at 10
kcal/mol. A q2 value of 0.836 for 6 latent variables (0.734
for 3 LVs) is an extremely high number when compared
to the recent literature. Indeed, this value for a CoMFA
far exceeds the average published in the Journal of
Medicinal Chemistry as described earlier and is compa-
rable to one of the highest values presented in that
journal. Regression is an ill-posed problem in statistics
that can result in models that are not sufficiently stable
when trained on noisy data. Because many grid points
may have equivalent energies (for example, sampling
interaction energies at points at the extremities of the
grid far from the aligned molecules would give rise to
small Lennard-Jones interaction energies of comparable
values) one is introducing a significant amount of “noise”
rather than “signal”. We remove points with only minor

variation in their field values using SYBYL’s minimum-σ
condition. This deletes points having a lower variance
than that assigned (in this work, 2). Removing points
with only minor variation in the field improved some of
the models.

The next variable we considered was how best to treat
the dielectric for the electrostatic interaction. Earlier
entries assumed a distance dependence of 1/r2. In the
subsection of Table 1 entitled “dielectric” we considered
a 1/r dependency. Although some changes in rcv

2 are
noted, these changes are not substantive suggesting that
the electrostatic contributions to these models are rela-
tively minor and that most of the contribution to stere-
oinduction originates from steric interactions. It will be
shown below that this foreshadowing is, indeed, correct.

The next variable we considered is the number of
descriptors generated. As the grid spacing becomes
smaller the number of data points increases. Too many
descriptors can actually degrade a PLS performance so
we changed the grid spacing only within the range 1-2
Å. What we find in Table 1 is that the models become
less significant as the number of descriptors increases
when a dielectric treatment of 1/r2 is used. Contrarily
there is an improvement in results when the grid
coarseness is reduced for a 1/r dielectric. In either event,
the results are not as good as those described above with
spacing of 2 Å. Finally, we considered alternative probe
atoms for generating descriptors as the last set of entries
in Table 1. We consider two alternative probes with
different treatments of dielectric and for different grid
spacing. No improvements are noted. At this point, then,
we have several models that are internally predictive
with very high values of q2 that we shall come back to
later. First, however, we need to consider what would
happen if the CoMFA were constructed and then tested
with an external test set.

(b) CoMFA with External Validation. To perform
this assessment we selected, randomly, 4 of the 23
compounds to serve as an external test set (catalysts 10,
15, 18, and 22) and used the remaining 18 molecules to
perform the CoMFA analysis. The same strategy de-
scribed above was used here. The results are compiled
in Table 2 where the column headings and the column
subsections have the same meaning as described for
Table 1.

Because fewer compounds are being used in this
CoMFA one anticipates and one sees a degradation of
the quality of the models derived. Still, the results are
extremely good with rcv

2 values approaching 0.8 for five
LVs and 0.7 for three LVs. Again we emphasize that
these are predictive models but they are validated
internally only. Using the best model we then predicted
the ee values of the four compounds omitted from the
training set. A plot of computed ee versus experimental
ee gave a linear relationship with a squared correlation
coefficient, r2, of 0.94. Most importantly, in concordance
with the criteria highlighted by Golbraikh and Tropsha,
we find a slope near unity (1.03) and an intercept of 7.5.
While the latter is somewhat elevated we find that the
model derived from the test set satisfies well Tropsha’s
arguments for a statistically valid QSAR.

Given a relatively small set of catalysts (18), we are
thus able to predict the ee of new catalysts. Hence we
have shown here that commercially available software
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can be readily implemented for this purpose. This is
important because this size data set and this range of ee
values is about what one would find from an initial
combi-chem evaluation of chiral catalysts. From these
limited data one can then make some predictions about
how good or how poor a given catalyst will be that has
yet to be made.

The second part of this research project is meant to

help explain how these catalysts work. In particular we
want to know, in a quantitative fashion, what role steric
and electrostatic factors play in asymmetric induction.
Inspection of mechanical models provides no quantifiable
information about this. Computational models are better
but they too suffer from being difficult to derive quantita-
tive information. For example, in Figure 2 are plots of

TABLE 2. Influence of Selected Variables on CoMFA Results for a Training Set of 19 Catalysts

fieldsa energy cutoffb dielectric function grid spacingc probe type latent variablesd rcv
2 r2 e

field
both 30/30 1/r2 2.00 C+

sp3 6//3 0.763//0.635 0.998
both 30/20 1/r2 2.00 C+

sp3 6//3 0.785//0.653 0.998
both 30/10 1/r2 2.00 C+

sp3 5//3 0.784//0.672 0.998
both 30/5 1/r2 2.00 C+

sp3 5//3 0.779//0.673 0.999
E 30 1/r2 2.00 C+

sp3 6//3 0.666//0.573 0.997
S 30 1/r2 2.00 C+

sp3 6//3 0.745//0.663 0.998
both 20/30 1/r2 2.00 C+

sp3 5//3 0.739//0.632 0.999
both 10/30 1/r2 2.00 C+

sp3 5//3 0.731//0.621 0.999
both 5/30 1/r2 2.00 C+

sp3 6//3 0.723//0.566 0.999

column filteringf

both 30/30 1/r2 2.00 C+
sp3 6//3 0.764//0.650 0.998

both 30/20 1/r2 2.00 C+
sp3 6//3 0.764//0.662 0.998

both 30/10 1/r2 2.00 C+
sp3 6//3 0.734//0.648 0.998

both 30/5 1/r2 2.00 C+
sp3 6//3 0.713//0.615 0.999

both 20/30 1/r2 2.00 C+
sp3 5//3 0.758//0.663 0.999

both 10/30 1/r2 2.00 C+
sp3 6//3 0.731//0.621 0.999

both 5/30 1/r2 2.00 C+
sp3 3 0.615 0.999

dielectric
both 30/30 1/r 2.00 C+

sp3 5//3 0.773//0.671 0.994
both 30/20 1/r 2.00 C+

sp3 5//3 0.789//0.682 0.999
both 30/10 1/r 2.00 C+

sp3 5//3 0.792//0.692 0.997
both 30/5 1/r 2.00 C+

sp3 5//3 0.781//0.689 0.999
both 20/30 1/r 2.00 C+

sp3 5//3 0.784//0.681 0.999
both 10/30 1/r 2.00 C+

sp3 5//3 0.756//0.653 0.999
both 5/30 1/r 2.00 C+

sp3 5//3 0.742//0.621 0.999
bothf 30/30 1/r 2.00 C+

sp3 5//3 0.783//0.678 0.999
bothf 30/20 1/r 2.00 C+

sp3 5//3 0.695//0.647 0.999
bothf 30/10 1/r 2.00 C+

sp3 4//3 0.608//0.555 0.999
bothf 30/5 1/r 2.00 C+

sp3 6//3 0.668//0.544 0.999
bothf 20/30 1/r 2.00 C+

sp3 5//3 0.811//0.702 0.999
bothf 10/30 1/r 2.00 C+

sp3 5//3 0.779//0.690 0.999
bothf 5/30 1/r 2.00 C+

sp3 4//3 0.699//0.671 0.999

grid spacing
both 30/20 1/r2 2.00 C+

sp3 6//3 0.785//0.653 0.998
both 30/20 1/r2 1.75 C+

sp3 6//3 0.618//0.439 0.998
both 30/20 1/r2 1.50 C+

sp3 6//3 0.671//0.521 0.998
both 30/20 1/r2 1.0 C+

sp3 6//3 0.605//0.465 0.998
both 30/20 1/r 2.00 C+

sp3 5//3 0.789/0.682 0.999
both 30/20 1/r 1.75 C+

sp3 5//3 0.561//0.423 0.999
both 30/20 1/r 1.50 C+

sp3 5//3 0.660//0.530 0.999
both 30/20 1/r 1.00 C+

sp3 5//3 0.632//0.424 0.999

probe type
both 30/20 1/r2 2.00 H+ 5//3 0.620//0.505 0.997
both 30/20 1/r2 1.75 H+ 6//3 0.663//0.500 0.999
both 30/20 1/r2 1.50 H+ 5//3 0.682//0.569 0.999
both 30/20 1/r2 1.00 H+ 5//3 0.658//0.531 0.999
both 30/20 1/r 2.00 H+ 5//3 0.615//0.517 0.998
both 30/20 1/r 1.75 H+ 6//3 0.655//0.522 0.999
both 30/20 1/r 1.50 H+ 5//3 0.691//0.584 0.999
both 30/20 1/r 1.00 H+ 5//3 0.646//0.534 0.996
both 30/20 1/r2 2.00 O-

sp3 5//3 0.608//0.512 0.999
both 30/20 1/r2 1.75 O-

sp3 6//3 0.603//0.468 0.998
both 30/20 1/r2 1.50 O-

sp3 5//3 0.680//0.573 0.998
both 30/20 1/r2 1.00 O-

sp3 5//3 0.658//0.521 0.997
both 30/20 1/r 2.00 O-

sp3 5//3 0.589//0.506 0.999
both 30/20 1/r 1.75 O-

sp3 6//3 0.614//0.485 0.999
both 30/20 1/r 1.50 O-

sp3 5//3 0.680//0.565 0.999
both 30/20 1/r 1.00 O-

sp3 5//3 0.646//0.523 0.999
a Fields are Steric (S) and Electrostatic (E) or Both. b Steric cutoff listed first/Coulomb cutoffs listed second, values in kcal/mol. c Angstrom.

d Optimum/Minimum number of components. e These values are for three latent variables only. f Column filtering set to 2.
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van derWaals and electrostatic surfaces of the Cu2+

bisoxazoline, 23.
Although the electrostatic potential surrounding the

catalyst in Figure 2 looks symmetric, it is not (like the
van der Waals surface it too is chiral), and we want to
know what percent of the asymmetric induction for such
catalysts can be attributed to these subtle, chiral electri-
cal effects. The van der Waals surface has better defined
grooves and cavities in which stereoinduction can arise
but, as with the electrostatic plot, quantifying this is
difficult. What is needed is information concerning steric
and electrostatic modes of stereoinduction. Specifically
we want to know how much of the stereoinduction arises
from steric effects and how much comes from electrical
effects.

CoMFA can provide insights concerning these issues.
Moreover, one can also use the CoMFA model as a guide
for synthesis. In this study, as in any QSAR, we want to
find a linear relationship that relates an activity (in this
case the ability of a catalyst to induce asymmetry during
a Diels-Alder reaction) to the intensity of the surround-
ing fields. From our best models we find that 60-70% of
the variance in the data can be described by the steric
field. The remaining 30-40% of the variance is attributed
to the electrostatic field. This can be loosely interpreted
as meaning that most of the stereoinduction originates
from steric effects of the ligands surrounding the catalyst.
While this seems intuitive, and while it is fully consonant
with our perceptions of how these particular catalysts
work, we point out that we are able to provide a
quantitative assessment of how much each effect con-
tributes to the stereoinduction. An intuitive evaluation
for other catalysts may not be so obvious, however, when
electrical effects are as important as (or more so than)
steric effects. Hence models such as ours have the
potential for assisting in the construction of improved
catalysts where both steric bulk and electronics can be
modulated via synthesis.

Another advantage of using a QSAR like that pre-
sented here is that one can visualize the large number
of computed descriptor coefficients by making iso-value
contour maps of those coefficients at grid points
surrounding the aligned data set. Rather than using
the coefficients themselves we present a more common
“standard deviation times coefficient” plot
(STDV*COEFFICIENTS), where, at each grid point, the

standard deviation of the energies for all compounds is
multiplied by the PLS coefficient. Plotted in Figure 3 are
regions of space where steric bulk should enhance or
destroy stereoinduction. We focus here on steric influ-
ences because most of the variance is explained with the
steric field. In Figure 3 is the aligned set of 23 catalysts.

To increase enantioselectivity the models indicate that
more bulk is to be placed in the space encapsulated in
green and steric bulk is to be removed from the region
encapsulated in yellow. If these plots are meaningful one
should find that highly efficient catalysts already have
steric bulk in the green region and are already devoid of
bulk in the yellow region. In Figure 4 we present one
such efficient catalyst, 3, where this is clearly seen.

Furthermore, one would expect that inefficient chiral
catalysts either lack steric bulk in the green region and/

FIGURE 2. Electrostatic potential (grid) surrounding the van
der Waals surface of catalyst 23.

FIGURE 3. CoMFA steric STDEV*COEFF contour plot.
Shown inside the field is the aligned set of 23 chiral catalysts
with hydrogen atoms removed for clarity. Placement of bulky
groups near the green region (contoured at contribution level
93) and/or removal of steric bulk near the yellow region
(contoured at contribution level 7) should increase ee for those
catalysts that are not very stereoselective.

FIGURE 4. CoMFA steric STDEV*COEFF contour plot.
Shown inside the field is the highly efficient catalyst 3 (ee
96%). It is to be noted that significant steric bulk lies in the
green region while the yellow region is devoid of steric bulk
confirming the model.
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or have too much steric bulk in the yellow region. In
Figure 5 we show catalyst 13 (ee 10). In this figure it
appears that the phenyl group on the left-hand side of
the diagram is too small to be effective while the phenyl
group on the right is too large. Modulating bulk such that
more steric pressure exists on the left-hand side, and less
steric pressure exists on the right-hand side is being
suggested by our model as a means of enhancing stereo-
selectivity.

Similar arguments concerning the influence of elec-
trostatic interactions can be given, but to conserve space,
we do not present these plots here (in all models the
electrical interactions are much less important than are
the steric interactions). Finally, while we are illustrating
these regions for a single model, we point out that similar
(although not identical) plots for the other high q2 models
give qualitatively similar results.

Summary

There were two goals set forth at the beginning of our
work. The first was to see if one could use off-the-shelf
software to generate high-quality QSARs for a small data

set of chiral catalysts. It was shown that extremely high
cross-validated r2 values could be generated quickly, and
with undue difficulty. The importance of this is that the
set of compounds used here is comparable to a typical
small combinatorial library that one might develop in an
exploratory research endeavor. We have shown that such
small libraries are amenable to such modeling. In this
work we carried out two CoMFAs. One included all 23
catalysts with internal validation only. The second study
divided the catalysts into a training set that was used to
develop the mathematical model and a test set that was
used to validate the model. Moreover, we demonstrated
here that the external test set gave results for which a
plot of predicted ee values versus observed ee values had
a high coefficient of regression, a slope near unity, and
an intercept that is reasonably close to zero, thus
fulfilling the stringent requirements for a statistically
valid mathematical model set forth by Golbraikh and
Tropsha.

The second goal of the work was to better understand,
qualitatively and quantitatively, why some catalysts
work efficiently at asymmetric induction for the reaction
in Scheme 1 while others do not. Quantitatively we are
able to predict with a high degree of accuracy which
catalysts are effective at carrying out this stereinduction
and which are not. Quantitatively we were also able to
show that approximately 70% of the variance in the
model arises from the steric field while the remaining
30% is electrostatic in nature. Quantitatively, we were
able to define regions in space where steric bulk will
influence the outcome of the reaction. Using this model,
then, we could now compute the shapes of other copper-
coordinated ligands and predict their activity, i.e., we are
in the position of doing statistically meaningful computer-
aided molecular design (CAMD).
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FIGURE 5. CoMFA steric STDEV*COEFF contour plot.
Shown inside the field is the inefficient catalyst 13 (ee 10%).
It is to be noted that while significant steric bulk lies in the
green region the yellow region has too much steric bulk that,
in turn, reduces the effectiveness of this catalyst.
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